If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=42+p
We move all terms to the left:
p^2-(42+p)=0
We add all the numbers together, and all the variables
p^2-(p+42)=0
We get rid of parentheses
p^2-p-42=0
We add all the numbers together, and all the variables
p^2-1p-42=0
a = 1; b = -1; c = -42;
Δ = b2-4ac
Δ = -12-4·1·(-42)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-13}{2*1}=\frac{-12}{2} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+13}{2*1}=\frac{14}{2} =7 $
| 6-9t+10=9t+4(-8t-10) | | (x-5)/9=3/(x+1) | | 5/3c-3=2/3-16 | | -12a-76=-4(1-6a) | | x-17=18x= | | 8-5j=-37 | | X2=6+x | | -3x-30=9 | | 209=-11n | | 153=a+4a+4a+45 | | x-5/9=3/x+1 | | 3=(5-2n)+9n | | 6-1+c=-9+8c | | 27=-(13+b) | | y+21/6=6 | | 3(j-16)=9 | | f(5.5)=10*5.5+8 | | 8+2(6d+8)=9d | | 9p+10=7p-10 | | 1=2≥9(z+2) | | -12x+11x=15-4 | | 5x7=3 | | 8(b-3)=259 | | 4x²–52x+169=121 | | 8m+3=2+6m-9 | | 84=-4(7-4v) | | 2y-1=5y-9 | | 95=c+24 | | r2+14r+45=0 | | 6(j-75)=72 | | 6(m+5)=36 | | 10+9w=3+10w |